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Introduction

* Diurnal cycle in cloud properties strongly
influence diurnal cycle in TOA flux

* Importance of the diurnal cycle
* Modulates hydrologic cycle and radiative
budget

* Influences long-term radiative variability

* Recent research indicates that in
convectively active regions, there is enough : !
variability on monthly time scales to —an i
contribute to the total interannual
variability of TOA flux balance by upto 7 W 5 5 5
m-2 (80%) [Taylor 2014] O ) L QWi S

* In order to simulate TOA flux realistically,
we must understand the causes for monthly
variability in the TOA flux diurnal cycle

e Diurnal cycle in cloud properties strongly : : : : :
influence diurnal cycle in TOA flux -80 - ; : ;
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Amazonian Convective Diurnal Cycle
(CDC)

1. rapid transition from shallow to deep conv.
2. transition from deep conv. to MCSs and remnant anvils
3. slow transition back to shallow conv.

Diurnal Cycle, Obs.
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[left] adapted from Lin et al. (2000), Fig. 17 a-c



Amazonian radiative diurnal cycle
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CERES observations show that both clear sky and cloud diurnal cycles influence
the OLR diurnal cycle

Clear sky follows diurnal cycle of surface heating

Cloud effect follows the convective diurnal cycle, and shifts the OLR diurnal cycle
earlier in the day

Albedo diurnal cycle is mainly controlled by diurnal cycle in solar incidence angle

Clouds decrease (increase) morning (afternoon) albedo
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Diurnal cycle sensitivity to reanalysis
atmospheric state

* Previous efforts use multiple atmospheric state
variables to characterize monthly variability in the
convective environment

* Common examples: 500 hPa vertical velocity, CAPE,
upper tropospheric humidity, lower tropospheric
stability, etc.
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Diurnal cycle sensitivity to reanalysis
atmOSphenC State [from Dodson and Taylor 2016]
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The monthly anomalies in diurnal
cycle of TOA flux variables (3 hr
resolution) are regressed against
anomalies of atmospheric state
variables

Increased CAPE shifts the time of
maximum OLR earlier in the day, and
increases afternoon albedo while
lowering morning albedo

For OLR, both the cloud radiative
effect and the clear sky effect control
the diurnal cycle sensitivity, but the
cloud effect is probably the larger
effect

For albedo, the cloud effect is by far
the primary driver of the albedo
diurnal cycle sensitivity

Reanalysis results for ERA-Interim,
MERRA, and NCEP/NCAR Reanalysis
disagree on the magnitude of the
Ion%wave sensitivities, and the shape
of the albedo curves in the late

afternoon .



Alternatives to conventional atmospheric
state variables

e Satellite observations of clouds can be used as an
alternative to reanalysis information of the
convective environment

* CloudSat offers observations about several
different aspects of convection that may be useful
for characterizing monthly convective activity



CloudSat Data — Identifying convection
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* CloudSat can be used to
identify deep convective
cores (DCCs) and
associated anvil clouds

* DCCs are identified by
height and reflectivity
criteria, on a single
vertical profile basis

* Anvils are identified as
middle- to high clouds
that are contiguously
attached with a DCC
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Diurnal cycle sensitivity to CloudSat
convective frequency
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The most simple is cloud
occurrence frequency, for all
clouds (COF), DCCs (DOF),
and anvils (AOF)

The longwave sensitivity to
COF’ monthly variability
closely resembles the
sensitivity to CAPE’ in both
timing and amplitude

The results for COF’, DOF’,
and AOF’ closely resemble
each other

The shortwave results differ
from the CAPE’ results
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Diurnal cycle sensitivity to CloudSat
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nsity and top height

The DCC upper cloud reflectivity
anomaly (DRA) is a proxy for the
updraft intensity

The longwave and shortwave
sensitivities to DRA’ are the
opposite of the sensitivity to cloud
frequency

The cloud top heights for DCCs
(DTH) and anvils (ATH) are often
used as proxies for convective
intensity

The DTH’ and ATH’-based results
also have the opposite sign to
cloud frequency, as well as smaller
magnitude for longwave

Different metrics for convective
intensity give different answers
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Convective diurnal cycles in MERRA(2)

* The convective diurnal cycle (CDC) has been an
ongoing topic of difficulty for GCMs and related
retrospective analysis products (reanalyses)

* Examination of reanalysis CDC in Amazon reveals
significant interesting disparities between
observations and models

11



amplitude (STD)

MERRA CDC

Diurnal Cycle, MERRA Diurnal Cycle, Obs.
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e Analysis time: June 2002 — Oct 2012

* Precip. maximizes at noon, and has secondary max. at
0200 LST

* 500 hPa vert. velocity has prominent semi-diurnal cycle
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MERRA Precip. by Source and Component

Frequency DC, MERRA
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* Both conv. and strat. precip. contribute to nocturnal maximum
* Precip. rate is controlled by both intensity and frequency

e Conv. freq. and intensity have same timing, but strat. has offset
timing
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amplitude (STD)

MERRA2 CDC
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* MERRAZ2 assimilates observations of precip. (in situ and
satellite) to correct AGCM precip.

* MERRA2 now has realistic early-afternoon precip. max.,
but also nocturnal secondary max.

* Vert. velocity still has semi-diurnal cycle
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MERRA2 Prec. by Source and Component

o Rate DC, ALL, MERRAZ » Intensity DC, ALL, MERRAZ o0 Frequency DC, ALL, MERRA2
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Precip. rate diurnal cycle amplitude is much smaller than observed
Nocturnal maximum is caused by strat. precip.

Daytime conv. frequency (strat. intensity) causes daytime (nocturnal)
precip. max

Posible explanation: semi-diurnal tide?



Conclusions

* The CloudSat sensitivity results depend strongly on
which index of convective activity is used

* MERRA 500 hPa vertical velocity has unrealistic
semi-diurnal cycle, which MERRA2 (mostly) does
not resolve

* Errors in MERRA CDC are related to more than
convective parameterization, but are a multi-
faceted problem

* MERRA2 trades precipitation timing problem with
precipitation amplitude
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[EXTRA] Data Sources

* CERES
* observes diurnal cycle of TOA flux
 diurnal cycle enhanced by geostationary observations

* Reanalysis

* three used for comparison
* ERA-Interim
* MERRA
 NCEP/NCAR Reanalysis (NNR)

* used to estimate monthly variability of CAPE, upper
tropospheric humidity, lower tropospheric stability, etc.

e CloudSat

* used to observe convective anvils, upper convective
cores
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MERRA and GEOS-5 CDCs
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* MERRA'’s errors are inherited from GEQOS-5, not
observations
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MERRA CDC by Quadrant

Diurnal Cycle, NW, MERRA
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* Vert. velocity has semi-diurnal cycle everywhere but NE
* Precip. has secondary max. everywhere
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TRMM Precip. by Source and Component
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rate is controlled almost entirely by
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TRMM Precip. by Source and Component
(MERRA spatial res.)
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* It is possible that obs./MERRA discrepancy is spatial resolution

issue
 However, 3B42 reduced to MERRA’s grid shows same result
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MERRA Prec. And Vert. Velocity (day)

40 -30
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MERRA PRCP MERRA O500 -
mm/hr 0 .1 1255 10 15 20 25 50 75100 Pa/s 1.0 0.5 0.0 -0.5 -1.0

* During day, widespread modest precip. and vertical
ascent



MERRA Prec. And Vert. Velocity (night)

01/29/2008 0400 UTC 0000 LST 01/29/2008 0400 UTC 0000 LST

MERRA PRCP MERRA O500
mm/hr 0 .1 1255 10 15 20 25 50 75100 Pa/s 1.0 0.5 0.0 -0.5 -1.0

* During night, concentrated precip. and high localized
vertical ascent
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N-NR and ERA-I CDCs
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* N-NR has realistic diurnal cycles of UTH and vert.
velocity, but misrepresents precip. and LWCF

* ERA-I misses afternoon ascent, where vert. velocity
maximizes nocturnally
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MERRA2 CDC by Quadrant

Diurnal Cycle, NW, MERRAZ2
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* Vert. velocity semi-diurnal cycle exists in all four

guadrants in MERRA2
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MERRA2 CDC by Quadrant (Dry Season)

Diurnal Cycle, NW, MERRAZ Diurnal Cycle, NE, MERRAZ
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* During dry season, NE quadrant has realistic vert.
velocity diurnal cycle



